9,768 research outputs found

    Microscopic Mechanism of the Helix-to-Layer Transformation in Elemental Group VI Solids

    Full text link
    We study the conversion of bulk Se and Te, consisting of intertwined a helices, to structurally very dissimilar, atomically thin two-dimensional (2D) layers of these elements. Our ab initio calculations reveal that previously unknown and unusually stable \delta - and \eta-2D allotropes may form in an intriguing multi-step process that involves a concerted motion of many atoms at dislocation defects. We identify such a complex reaction path involving zipper-like motion of such dislocations that initiate structural changes. With low activation barriers <0.3 eV along the optimum path, the conversion process may occur at moderate temperatures. We find all one-dimensional (1D) and 2D chalcogen structures to be semiconducting.Comment: accepted by Nano Letter

    Fermions Tunneling from Higher-Dimensional Reissner-Nordstr\"om Black Hole: Semiclassical and Beyond Semiclassical Approximation

    Full text link
    Based on semiclassical tunneling method, we focus on charged fermions tunneling from higher-dimensional Reissner-Nordstr\"{o}m black hole. We first simplify the Dirac equation by semiclassical approximation, and then a semiclassical Hamilton-Jacobi equation is obtained. Using the Hamilton-Jacobi equation, we study the Hawking temperature and fermions tunneling rate at the event horizon of the higher-dimensional Reissner-Nordstr\"{o}m black hole spacetime. Finally, the correct entropy is calculation by the method beyond semiclassical approximation.Comment: 7 page

    Glider: A GPU Library Driver for Improved System Security

    Full text link
    Legacy device drivers implement both device resource management and isolation. This results in a large code base with a wide high-level interface making the driver vulnerable to security attacks. This is particularly problematic for increasingly popular accelerators like GPUs that have large, complex drivers. We solve this problem with library drivers, a new driver architecture. A library driver implements resource management as an untrusted library in the application process address space, and implements isolation as a kernel module that is smaller and has a narrower lower-level interface (i.e., closer to hardware) than a legacy driver. We articulate a set of device and platform hardware properties that are required to retrofit a legacy driver into a library driver. To demonstrate the feasibility and superiority of library drivers, we present Glider, a library driver implementation for two GPUs of popular brands, Radeon and Intel. Glider reduces the TCB size and attack surface by about 35% and 84% respectively for a Radeon HD 6450 GPU and by about 38% and 90% respectively for an Intel Ivy Bridge GPU. Moreover, it incurs no performance cost. Indeed, Glider outperforms a legacy driver for applications requiring intensive interactions with the device driver, such as applications using the OpenGL immediate mode API
    • …
    corecore